Brief information about the project

Name of the project	AP14870308 "Development of technology for catalytic
Traine of the project	petrochemical synthesis of oxygen-containing compounds from
	aromatic hydrocarbons in the presence of nanoscale magnetic
	composites"
Relevance	The Republic of Kazakhstan has an oil refining industry. In
	addition to the production of various types of liquid fuels, oils and
	tar-asphaltene components, there is a question of obtaining
	oxygen-containing compounds that are used as solvents, starting
	materials for numerous organic syntheses, as monomers in the
	production of polymer materials, dyes, synthetic fibers,
	medicines, raw materials for synthetic detergents, flavors,
	surfactants, etc. Therefore, the development of obtaining oxygen-
	containing compounds from hydrocarbons using nanoscale
	magnetically controlled composites deserves the closest attention.
	Such catalytic systems make it possible to carry out the process of
	oxidation of hydrocarbons under mild conditions in the liquid phase. However, there are still no studies whose results bring
	together the basic patterns of catalytic reactions involving
	hydrocarbons of various structures and their oxygen-containing
	derivatives, which are widely used in many sectors of the national
	economy. The syntheses of oxygen-containing compounds are
	multistage and time-consuming, and additional purification is
	required to obtain the target products. The project will develop
	nanoscale magnetic composites of transition metals immobilized
	on a polymer matrix. Such catalysts have a large surface area, ease
	of separation from the reaction mixture, and their activity and
	selectivity can be controlled by a magnetic field.
Purpose	The aim of the project is to develop the technology of
	catalytic petrochemical synthesis of oxygen-containing
	compounds from aromatic hydrocarbons in the presence of
Objectives	nanoscale magnetic composites stabilized by polymers.1. Preparation of nanoscale magnetic composites based on
Objectives	Fe_3O_4 , $CoFe_2O_4$ immobilized on chitosan and
	polyvinylpyrrolidone by chemical deposition or
	mechanochemical synthesis.
	2. Study of phase state, structure and size distribution of
	obtained nanomaterials and their composites.
	3. Characterization of magnetic parameters of the obtained
	hybrid materials (coercive force, saturation magnetization, etc.).
	4. Optimization of magnetic composite compositions for
	aromatic hydrocarbon oxidation (phenol, p-xylene). Detailed
	study and quantitative description of oxidation kinetics of
	aromatic hydrocarbons with oxygen in the presence of developed
	nanoscale magnetically controlled composites.
	5. Development of hardware and process diagram,
	technological regulations for production of functional hybrid
	materials.
	6. Provision of recommendations on use of results of catalytic petrochemical synthesis of oxygen-containing compounds from
	aromatic hydrocarbons on magnetic composites.
	a omatic nyulocaroons on magnetic composites.

Expected and achieved	The following results have been achieved and are expected
results	within the framework of the project:
	• Nanoscale magnetic composites of iron and cobalt
	stabilized with natural (chitosan) and synthetic
	(polyvinylpyrrolidone) polymers have been obtained.
	• Modern physicochemical methods (RFD, scanning
	electron microscopy, BET, elemental and chemical analysis)
	establish the composition and structure of the resulting composites. With the help of Mössbauer, EPR, IR spectroscopy,
	the composition, oxidative state of the metal established, using a
	magnetometer and hysteresisograph, the magnetic properties of
	the obtained magnetic composites studied.
	• In the vortex mode, under thermostatic conditions, the
	kinetics of oxidation of phenol with oxygen in the presence of
	developed nanoscale magnetically controlled composites in the
	magnetic field and without it will be studied in detail and
	quantified.
	• In the vortex mode, under thermostatic conditions, the kinetics of oxidation of paraxylene with oxygen in the presence of
	the developed nanoscale magnetically controlled composites in
	the magnetic field and without it will be studied in detail and
	quantified.
	• The process parameters of production will be optimized, as
	well as tests of the activity and selectivity of the developed
	catalysts in the process of oxidation of phenol (TMP) with oxygen
	and oxidation of paraxylene will be carried out. A process diagram
	and process regulations for the production of catalytic composites will be developed.
Research team members	1. Shakiyeva T.V. candidate of chemical Sciences, h-index –
with their identifiers	4. Scopus author ID: 55911739700. ORCID ID: ID: <u>442x</u>
(Scopus Author ID,	2. Dossumova B.T. candidate of chemical Sciences, h-index
Researcher ID, ORCID, if	– 3. Scopus author ID: 57210592713. ORCID ID:
available) and links to	https://orcid.org/0000-0003-4126-2907.
relevant profiles	3. Sassykova L.R., candidate of chemical Sciences, h-index –
	15. Scopus Author ID: 56178673800. ORCID ID: https://orcid.org/0000-0003-4721-9758
	4. Baizhomartov B.B. PhD, h-index – 3. Scopus author ID:
	55911449500. ORCID ID: https://orcid.org/0000-0002-3221-114x.
	5. Dzhatkambaeva U.N. master's degree, h-index – 3. ORCID
	ID: <u>https://orcid.org/0000-0001-8216-3206</u>
	6.Ilmuratova M.S. h-index – 1. Scopus Author
	ID:57262368200. ORCID ID: https://orcid.org/0000-0001-7773-6057
List of publications with links to them	1. L. R. Sassykova, B.T. Dossumova, M. Ilmuratova, T. V. Shakiyeva, B. B. Baizhomartov, A. R. Sassykova, Zh. M.
	Zhaxibayeva, T.S. Abildin. Development of nanostructured
	catalysts for catalytic oxidative water purification from organic
	impurities, including phenolic compounds //Chimica Techno Acta
	2023, vol. 10(3), No. 202310309. DOI:
	10.15826/chimtech.2023.10.3.09
	2. B.T. Dossumova, L. R. Sassykova, T. V. Shakiyeva, M. S.
	Ilmuratova, A.R. Sassykova, A.A. Batyrbayeva, Zh. M. Zhaxibayeva, U.N. Dzhatkambayeva and B.B.Baizhomartov
	Zhanbayeva, U.N. Dzhatkanbayeva and D.D.Daizhomartov

	Catalysts Based on Nanoscale Iron and Cobalt Immobilized on
	Polymers for Catalytic Oxidation of Aromatic Hydrocarbons:
	Synthesis, Physico-Chemical Studies, and Tests of Catalytic
	Activity//Processes 2024, 12(1), 29;
	https://doi.org/10.3390/pr12010029.
Patents	-